

Bearing / Azimuth documentation!

Contents:

	Bearing / Azimuth Converter
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage

	bearing
	bearing package

	Contributing

	Future Contribution Goals
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2020-04-19)

Indices and tables

	Index

	Module Index

	Search Page

Bearing / Azimuth Converter

[image: Documentation Status]
 [https://bearingazimuth.readthedocs.io/en/latest/?badge=latest]Simple application to convert between bearings and azimuth. This application
came about when I found my simple CAD program did not accept bearings as input.
So, the best choice was to build a little converter so that values could be copied
to the clipboard and pasted into the CAD program.

	Free software: MIT license

	Documentation: https://bearingazimuth.readthedocs.io/en/latest/

	Github Repository: https://github.com/Shakiestnerd/BearingAzimuth

Features

	Enter a bearing in the form N 45° 30’ 00” E and have it converted to an azimuth (angle from north).

	Enter the azimuth angle and have the bearing automatically calculated.

	Copy the results to the clipboard

	Draw a sample angle on screen.

	User interface created with PySimpleGui

[image: Bearing Screen]

Credits

Used the Anaconda distribution for development.

PySimpleGui is the name of my virtual environment.

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install bearing, run this command in your terminal:

$ pip install bearing

This is the preferred method to install bearing, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for bearing can be downloaded from the Github repo [https://github.com/shakiestnerd/bearing].

You can either clone the public repository:

$ git clone git://github.com/shakiestnerd/bearing

Or download the tarball [https://github.com/shakiestnerd/bearing/tarball/master]:

$ curl -OJL https://github.com/shakiestnerd/bearing/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

The Bearing / Azimuth application is a stand-alone utility that does a
conversion between bearings and azimuth.

As you enter the information into the form, the fields will update based
on your input.

[image: Bearing Screen]
Note: The Bearing class located in angle.py. This class may be
useful outside of this little utility.

bearing

	bearing package
	Submodules

	bearing.angle module

	bearing.bearing module

	Module contents

bearing package

Submodules

bearing.angle module

This module includes the Bearing class which handles all the bearings and
azimuth values and performs all the conversions.

	
class bearing.angle.Bearing[source]

	Bases: object

The Bearing class handles storing the data for bearing and azimuth.
It does the conversion between the two and returns the information in
several formats.

	
calc_azimuth() → None[source]

	Performs the azimuth conversion using the private members

	Returns

	None

	
calc_bearing(az: float) → None[source]

	Performs the bearing calculation.
:param az: Azimuth as a float

	Returns

	None

	
dec_to_dms() → None[source]

	Adjust the angle based on north and sets the degrees, minutes, and
seconds member variables.

	Returns

	None

	
get_azimuth() → float[source]

	Since accessing the member variables directly is discouraged, this
method returns the azimuth value.

	Returns

	azimuth value

	Return type

	float

	
get_bearing() → str[source]

	Return just the bearing as a formatted string.

	Returns

	bearing value

	Return type

	str

	
get_bearing_dict() → Dict[KT, VT][source]

	Return the components of a bearing in a dictionary.

	Returns

	bearing

	Return type

	Dict

	
set_azimuth(az: float) → str[source]

	Set the value of the azimuth and perform the bearing conversion.

	Parameters

	az (float) – azimuth value

	Returns

	The bearing as a string

	Return type

	str

	
set_bearing(n: str, d: int, m: int, s: int, e: str) → float[source]

	Initialize a bearing and perform the azimuth conversion

	Parameters

	
	n (str) – northing (is always either ‘N’ or ‘S’)

	d (int) – degrees

	m (int) – minutes

	s (int) – seconds

	e (str) – easting (always either ‘E’ or ‘W’)

	Returns

	the azimuth as a float

	Return type

	float

	
submit_azimuth(az: str) → Dict[KT, VT][source]

	Sets the azimuth value when the input is a string. Does some validation
and returns the bearing as a dictionary.

	Parameters

	az (str) – azimuth value

	Returns

	bearing components

	Return type

	Dict

	
submit_bearing(n: str, d: str, m: str, s: str, e: str) → float[source]

	Initialize a bearing using string values for input. submit_bearing
does some extra validation and converts degrees minutes, and seconds
to integers.

	Parameters

	
	n (str) – northing (is always either ‘N’ or ‘S’)

	d (str) – degrees

	m (str) – minutes

	s (str) – seconds

	e (str) – easting (always either ‘E’ or ‘W’)

	Returns

	the azimuth as a float or 0 on failure

	Return type

	float

bearing.bearing module

Bearing main module. Runs the user interface to allow entering the bearing
and azimuth values

	
class bearing.bearing.UI[source]

	Bases: object

The UI class defines the user interface dialog using PySimpleGUI. It
allows entering the bearing and azimuth values and performs the conversions
as text is entered into the form fields.

	
draw_axis()[source]

	Draws the X and Y axis on the canvas for the graphical representation of
the angle on the user interface form.

	
draw_vector()[source]

	Draws the angle on the canvas. Adds a little arc to illustrate.

Module contents

Top-level package for bearing.

Contributing

What follows is the boilerplate contributing guidelines that were included with
Audrey’s python cookie cutter package. I like them and it is goal I aspire to
be able to support. So, for that reason, I am leaving the information in this file.

This is a small project that allows me to get comfortable with developing and Deploying
a project along with testing and documentation that should be part of a complete package.

At this time, I only feel comfortable with looking at reported bugs.

Thank you for your understanding.

Future Contribution Goals

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/shakiestnerd/bearing/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

bearing could always use more documentation, whether as part of the
official bearing docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/shakiestnerd/bearing/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up bearing for local development.

	Fork the bearing repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/bearing.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv bearing
$ cd bearing/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 bearing tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/shakiestnerd/bearing/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_bearing

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Keith Sanders <keithmo@canofworms.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2020-04-19)

	First release on PyPI.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bearing	

 	
 	
 bearing.angle	

 	
 	
 bearing.bearing	

Index

 B
 | C
 | D
 | G
 | S
 | U

B

 	
 	Bearing (class in bearing.angle)

 	bearing (module)

 	
 	bearing.angle (module)

 	bearing.bearing (module)

C

 	
 	calc_azimuth() (bearing.angle.Bearing method)

 	
 	calc_bearing() (bearing.angle.Bearing method)

D

 	
 	dec_to_dms() (bearing.angle.Bearing method)

 	
 	draw_axis() (bearing.bearing.UI method)

 	draw_vector() (bearing.bearing.UI method)

G

 	
 	get_azimuth() (bearing.angle.Bearing method)

 	
 	get_bearing() (bearing.angle.Bearing method)

 	get_bearing_dict() (bearing.angle.Bearing method)

S

 	
 	set_azimuth() (bearing.angle.Bearing method)

 	set_bearing() (bearing.angle.Bearing method)

 	
 	submit_azimuth() (bearing.angle.Bearing method)

 	submit_bearing() (bearing.angle.Bearing method)

U

 	
 	UI (class in bearing.bearing)

 All modules for which code is available

	bearing.angle

	bearing.bearing

 Source code for bearing.angle

""" This module includes the Bearing class which handles all the bearings and
azimuth values and performs all the conversions.
"""
import math
from typing import Dict

DEGREE = "\N{DEGREE SIGN}"

[docs]class Bearing:
 """
 The Bearing class handles storing the data for bearing and azimuth.
 It does the conversion between the two and returns the information in
 several formats.
 """

 def __init__(self):
 """
 Initialize the private class variables. They are not intended to be
 addressed directly. Use the included methods instead.
 """
 self._degree: int = 0
 self._minute: int = 0
 self._second: int = 0
 self._azimuth: float = 0
 self._north: str = "N"
 self._east: str = "E"

 def __str__(self) -> str:
 """
 Text output of both the bearing and azimuth

 :return: bearing and azimuth
 :rtype: str
 """
 result: str = (
 f"{self._north}{int(self._degree):02d}{DEGREE}"
 f"{int(self._minute):02d}'"
 f'{int(self._second):02d}"{self._east}'
 f" : {self._azimuth:.4f}{DEGREE}"
)
 return result

 def __repr__(self) -> str:
 """
 Repr output of both the bearing and azimuth

 :return: bearing and azimuth
 :rtype: str
 """
 result: str = (
 f"{self._north}{int(self._degree):02d}{DEGREE}"
 f"{int(self._minute):02d}'"
 f'{int(self._second):02d}"{self._east}'
 f" : {self._azimuth:.4f}{DEGREE}"
)
 return result

[docs] def set_bearing(self, n: str, d: int, m: int, s: int, e: str) -> float:
 """
 Initialize a bearing and perform the azimuth conversion

 :param n: northing (is always either 'N' or 'S')
 :type n: str
 :param d: degrees
 :type d: int
 :param m: minutes
 :type m: int
 :param s: seconds
 :type s: int
 :param e: easting (always either 'E' or 'W')
 :type e: str
 :return: the azimuth as a float
 :rtype: float

 """
 self._north = str(n)
 self._degree = int(d)
 self._minute = int(m)
 self._second = int(s)
 self._east = str(e)
 self.calc_azimuth()
 return self._azimuth

[docs] def set_azimuth(self, az: float) -> str:
 """
 Set the value of the azimuth and perform the bearing conversion.

 :param az: azimuth value
 :type az: float
 :return: The bearing as a string
 :rtype: str
 """
 self._azimuth = round(float(az), ndigits=4)
 self.calc_bearing(az)
 return self.get_bearing()

[docs] def calc_azimuth(self) -> None:
 """
 Performs the azimuth conversion using the private members

 :return: None
 """
 angle = round(self._degree + self._minute / 60 + self._second / 3600, 4)
 if self._north == "N" and self._east == "E":
 self._azimuth = angle
 if self._north == "N" and self._east == "W":
 self._azimuth = 360 - angle
 if self._north == "S" and self._east == "E":
 self._azimuth = 180 - angle
 if self._north == "S" and self._east == "W":
 self._azimuth = 180 + angle

[docs] def calc_bearing(self, az: float) -> None:
 """
 Performs the bearing calculation.
 :param az: Azimuth as a float

 :return: None
 """
 if az <= 90.0 or az >= 270.0:
 self._north = "N"
 else:
 self._north = "S"
 if 0.0 < az < 180.0:
 self._east = "E"
 else:
 self._east = "W"
 self.dec_to_dms()

[docs] def dec_to_dms(self) -> None:
 """
 Adjust the angle based on north and sets the degrees, minutes, and
 seconds member variables.

 :return: None
 """
 if self._azimuth < -360 or self._azimuth > 360:
 raise ValueError(
 f"Azimuth angle must be between 0{DEGREE} and 360{DEGREE}."
)

 angle = self._azimuth
 # adjust angle based on quadrant
 if 90 < self._azimuth <= 180:
 angle = 180 - self._azimuth
 elif 180 < self._azimuth < 270:
 angle = self._azimuth - 180
 elif 270 <= self._azimuth <= 360:
 angle = 360 - self._azimuth

 decimal, self._degree = math.modf(angle)

 remainder, self._minute = math.modf(decimal * 60)

 self._second = remainder * 60

[docs] def get_bearing(self) -> str:
 """
 Return just the bearing as a formatted string.

 :return: bearing value
 :rtype: str
 """
 result: str = (
 f"{self._north}{int(self._degree):02d}{DEGREE}"
 f"{int(self._minute):02d}'"
 f'{int(self._second):02d}"{self._east}'
)
 return result

[docs] def get_bearing_dict(self) -> Dict:
 """
 Return the components of a bearing in a dictionary.

 :return: bearing
 :rtype: Dict
 """
 return {
 "northing": f"{self._north}",
 "degrees": f"{int(self._degree):02d}",
 "minutes": f"{int(self._minute):02d}",
 "seconds": f"{int(self._second):02d}",
 "easting": f"{self._east}",
 }

[docs] def get_azimuth(self) -> float:
 """
 Since accessing the member variables directly is discouraged, this
 method returns the azimuth value.

 :return: azimuth value
 :rtype: float
 """
 return self._azimuth

[docs] def submit_bearing(self, n: str, d: str, m: str, s: str, e: str) -> float:
 """
 Initialize a bearing using string values for input. submit_bearing
 does some extra validation and converts degrees minutes, and seconds
 to integers.

 :param n: northing (is always either 'N' or 'S')
 :type n: str
 :param d: degrees
 :type d: str
 :param m: minutes
 :type m: str
 :param s: seconds
 :type s: str
 :param e: easting (always either 'E' or 'W')
 :type e: str
 :return: the azimuth as a float or 0 on failure
 :rtype: float
 """
 if len(n) == 1 and len(e) == 1:
 if n in ["N", "S"] and e in ["E", "W"]:
 if 0 < len(d) < 3 and 0 < len(m) < 3 and 0 < len(s) < 3:
 return self.set_bearing(n, int(d), int(m), int(s), e)
 else:
 return 0

[docs] def submit_azimuth(self, az: str) -> Dict:
 """
 Sets the azimuth value when the input is a string. Does some validation
 and returns the bearing as a dictionary.

 :param az: azimuth value
 :type az: str

 :return: bearing components
 :rtype: Dict
 """
 try:
 value = float(az)
 if 0 <= value <= 360:
 self.set_azimuth(value)
 except ValueError:
 self.set_azimuth(0)

 return self.get_bearing_dict()

if __name__ == "__main__":
 b = Bearing()
 b.set_azimuth(90.75)
 print(b)
 assert b.__str__() == f"S89{DEGREE}15'00\"E : 90.7500{DEGREE}"

 Source code for bearing.bearing

"""
Bearing main module. Runs the user interface to allow entering the bearing
and azimuth values
"""
import PySimpleGUI as sg
from bearing.angle import Bearing
import pyperclip
import math
import webbrowser

DEGREE = u"\N{DEGREE SIGN}"
SIZE_X = 200
SIZE_Y = 200
NUMBER_MARKER_FREQUENCY = 25

[docs]class UI:
 """
 The UI class defines the user interface dialog using PySimpleGUI. It
 allows entering the bearing and azimuth values and performs the conversions
 as text is entered into the form fields.
 """

 def __init__(self):
 """
 Run the user interface using PySimpleGUI
 """

 # Theme must be defined before layout
 # Reddit, SandyBeach, LightBrown1, SystemDefaultForReal, LightBrown12
 sg.theme("SystemDefaultForReal")
 self.canvas = sg.Graph(
 canvas_size=[SIZE_X * 2, SIZE_Y * 2],
 graph_top_right=[100, 100],
 graph_bottom_left=[-100, -100],
 key="graph",
)

 layout = [
 [sg.Text("Bearing:")],
 [
 sg.Spin(
 values=["S", "N"],
 initial_value="N",
 key="northing",
 enable_events=True,
),
 sg.Input("00", size=(2, 1), key="degree", enable_events=True,),
 sg.Text(DEGREE, size=(1, 1)),
 sg.Input("00", size=(2, 1), key="minute", enable_events=True,),
 sg.Text("'", size=(1, 1)),
 sg.Input("00", size=(2, 1), key="second", enable_events=True,),
 sg.Text('"', size=(1, 1)),
 sg.Spin(
 values=["W", "E"],
 initial_value="E",
 key="easting",
 enable_events=True,
),
],
 [sg.Text("Azimuth:")],
 [sg.Input("0.0", size=(15, 2), key="azimuth", enable_events=True,)],
 [
 sg.Button("Copy Bearing", key="copy_bear"),
 sg.Button("Copy Azimuth", key="copy_az"),
 sg.Button("Docs", key="docs"),
 sg.Button("Exit"),
],
 [self.canvas],
]

 window = sg.Window("Bearing - Azimuth", layout, font=("Ubuntu", 16))
 self.direction = Bearing()

 # Event dispatch handler
 while True:
 event, values = window.read()

 if event in (None, "Exit"):
 break
 elif event in ("northing", "degree", "minute", "second", "easting"):
 angle = self.direction.submit_bearing(
 values["northing"],
 values["degree"],
 values["minute"],
 values["second"],
 values["easting"],
)

 window["azimuth"].update(angle)

 elif event == "azimuth":
 bear = self.direction.submit_azimuth(values["azimuth"])
 window["northing"].update(bear["northing"])
 window["degree"].update(bear["degrees"])
 window["minute"].update(bear["minutes"])
 window["second"].update(bear["seconds"])
 window["easting"].update(bear["easting"])
 elif event == "copy_bear":
 value = self.direction.get_bearing()
 pyperclip.copy(value)
 elif event == "copy_az":
 value = str(self.direction.get_azimuth())
 pyperclip.copy(value)
 elif event == "docs":
 webbrowser.open("https://bearingazimuth.readthedocs.io/en/latest/")
 self.canvas.erase()
 self.draw_axis()
 self.draw_vector()

 window.close()

[docs] def draw_axis(self):
 """
 Draws the X and Y axis on the canvas for the graphical representation of
 the angle on the user interface form.
 """
 self.canvas.draw_line((-90, 0), (90, 0), color="blue") # axis lines
 self.canvas.draw_line((0, -90), (0, 90), color="blue")
 self.canvas.draw_text("E", location=(95, 0), color="blue")
 self.canvas.draw_text("W", color="blue", location=(-95, 0))
 self.canvas.draw_text("N", color="blue", location=(0, 95))
 self.canvas.draw_text("S", color="blue", location=(0, -95))

[docs] def draw_vector(self):
 """
 Draws the angle on the canvas. Adds a little arc to illustrate.
 """
 angle = self.direction.get_azimuth()
 radians = math.radians(angle)
 x = y = 0
 end_x = x + 90 * math.sin(radians)
 end_y = y + 90 * math.cos(radians)

 self.canvas.draw_arc(
 top_left=(-50, 50),
 bottom_right=(50, -50),
 start_angle=90,
 extent=angle * -1,
 arc_color="green",
)
 self.canvas.draw_line((x, y), (end_x, end_y), color="red", width=2)

if __name__ == "__main__":
 UI()

 _static/up.png

_images/main.gif
Bearing:
N2 (00 © 00 * [o0 " EZ
Azimuth:
0.0 |

Copy Bearing | Copy Azimuth | Exit |

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Bearing / Azimuth documentation!

 		
 Bearing / Azimuth Converter

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 bearing

 		
 bearing package

 		
 Submodules

 		
 bearing.angle module

 		
 bearing.bearing module

 		
 Module contents

 		
 Contributing

 		
 Future Contribution Goals

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2020-04-19)

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/main.gif
Bearing:
N2 (00 © 00 * [o0 " EZ
Azimuth:
0.0 |

Copy Bearing | Copy Azimuth | Exit |

_static/minus.png

_static/up-pressed.png

